Plot = import("https://esm.sh/@observablehq/plot@0.6.13")
fontFamily = "Source Sans Pro"
fontSize = ".75rem"
d = transpose(forest_data)
maxX = d3.max(forest_data.effects_cih)
pad = 0.1
methodIndeces = d3.rollup(
d,
(values) => ({Method: values[0].Method, order: d3.min(values, (d) => d.order)}),
(d) => d.Method
)
method_vals = Array.from(methodIndeces.keys()).filter(x => x)
age_sort = (a, b) => parseInt(a.split('-')[0], 10) - parseInt(b.split('-')[0], 10)
age_vals = Array.from(new Set(forest_data.age_group)).filter(d => d).sort(age_sort)
Forest plot of the meta-analytic results for infant-directed-speech preference. The standardized effect size [x axis] is shown for each lab and age group [y axis]; error bars indicate 95% confidence intervals. Effects are grouped by method [colors]: central fixation, eye tracking, or head-turn preference procedure (HPP). Larger plotted points correspond to greater inverse variance. For each method, the diamond and associated error bars represent the meta-analytic estimate from the method-moderated model and the estimate’s 95% confidence interval. The top diamond shows the global meta-analytic estimate and 95% confidence interval from the unmoderated model.
The lines on this plot shows fitted values from a mixed effects model predicting looking time [y axis] from trial number [x axis], age [columns], method [rows], trial type [IDS red vs. ADS blue], and language group [NAE dark vs. non-NAE light].